Proportional areas

by Kerstin Fröberg

As I was putting in a patterned wood floor this summer, I was struck anew with how big an area a seemingly narrow border can come to. This has been turning over in my mind, and I decided to explore its patterning possibilities:

what if I made a pattern of rectangles within each other, the areas, heigths and widths of the same proportion to each other?

Let the proportion between height and width be K: $K = \frac{h}{w}$

This makes the area $A_0 = h_0 * w_0 = w_0^2 * K$

As I wanted the proportions between length and width remain the same, K will remain the same.

Therefore, the second area A_1 can be expressed as $w_1^2 * K$

If the proportion between A_0 and A_1 is P, then $P = \frac{w_0^2 * K}{w_1^2 * K}$

which gives $w_1 = \sqrt{\frac{1}{P}} * w_0$ and $h_1 = w_1 * K$

To begin the play, I started with some easy figures: say that the smallest area is 1 unit wide and 2 units tall. To make things more thread-friendly I multiplied by 10, and rounded the result to nearest even figure.

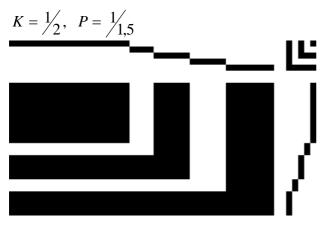
proportion between areas	width	scaled width	height	scaled height
$A_0 / A_1 = 1 / 1,5$	$w_0 = 1$	10	$h_0 = 2$	20
	$w_1 = 1,22$	12	$h_1 = 2,45$	24
	w ₂ = 1,5	16	$h_2 = 3$	30
	$w_3 = 1,84$	18	$h_3 = 3,67$	36
	$w_4 = 2,24$	22	$h_4 = 4,48$	44
$A_0 / A_1 = 1 / 2$	$w_0 = 1$	10	$h_0 = 2$	20
	$w_1 = 1,41$	14	$h_1 = 2,82$	28
	<i>w</i> ₂ = 2	20	<i>h</i> ₂ = 4	40
	$w_3 = 2,82$	28	$h_3 = 5,65$	56
	$w_4 = 3,98$	40	$h_4 = 7,97$	80
$A_0 / A_1 = \frac{1}{3}$	$w_0 = 1$	10	$h_0 = 2$	20
	$w_1 = 1,73$	18	$h_1 = 3,46$	34
	w ₂ = 3	30	$h_2 = 6$	60
	$w_3 = 5,19$	52	$h_3 = 10,38$	104
	<i>w</i> ₄ = 8,98	90	$h_4 = 17,97$	180

				3
proportion between	width	scaled	height	scaled
areas		width		height
$A_0 / A_1 = \frac{1}{2}$	$w_0 = 3$	9	$h_0 = 5$	15
	$w_1 = 4,24$	13	$h_1 = 7,07$	21
	<i>w</i> ₂ = 6	18	$h_2 = 10,02$	30
	$w_3 = 8,49$	25	$h_3 = 14,18$	43
	$w_4 = 12$	36	$h_4 = 20,04$	60
$A_0 / A_1 = \frac{1}{3}$	$w_0 = 3$	9	$h_0 = 5$	15
	$w_1 = 5,20$	16	$h_1 = 8,68$	26
	w ₂ = 8,99	27	$h_2 = 15,01$	45
	$w_3 = 15,57$	47	$h_3 = 26,00$	78
	$w_4 = 26,97$	81	$h_4 = 45,04$	135

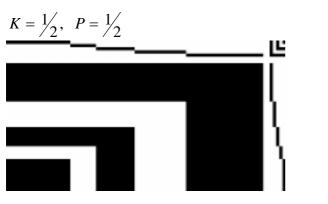
Some figures with a nearly golden rectangle as the basis - $K = \frac{5}{3} = 1,67$, scaling factor 3 :

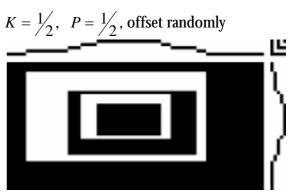
I made a number of block drafts based on these figures. I soon found out that although concentric rectangles are all right for a floor, it made boring surface patterns. I started to offset the inner rectangles both randomly and orderly, let them share one corner...

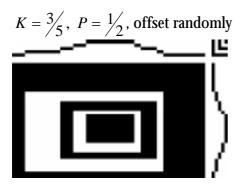
Here are some of my results:

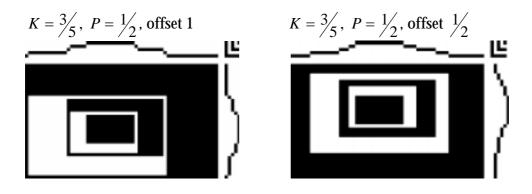


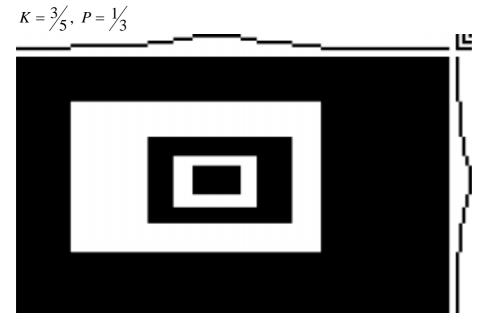
This was not very interesting - it may be better with a bigger scaling factor. This small factor combined with my desire to round to an even figure made the steps too similar to my taste.



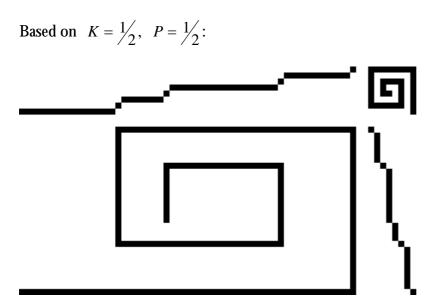








Then I went totally overboard and started to do spirals...



I could go on ...

All in all, this was an interesting excercise, one that may well find its way into some interior fabrics some day. I may use the actual proportions of a door to make draperies, for instance. Or it might be used for placemats, indicating the "correct" positions of the plates and the silverware. Maybe the spiral could be elaborated into a labyrinth for sofa cushions...

© Kerstin Fröberg 2000